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Machine Learning In Industrial loT £ XILINX.
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Machine Learning provides increased intelligence to the Industrial Internet of Things
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Q Savings Potential —> Total Cost of Failure
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Predictive Maintenance can provide significant savings

* 30 - 40 % over reactive maintenance and,

* 8-12 % over preventive maintenance programs.
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Source: Mike Sandalini, “Defect and Failure True Costing”



Q Significant Savings Potential & XILINX &

Failure Detection Point

Reactive
Maintenance (RM)

Ascet Failure

Machine Learning Traditional Predictive Preventive
Predictive Maintenance  Maintenance (Pdid) Maintenance (PM)

Machine Asset Condition

q/ PN < Costto Repair

Source: Mike Sandalini, “Defect and Failure True Costing”

Predictive Maintenance market expected growth: $1,404.3 Million in 2016 to $4,904.0 Million by 2021,
Compound Annual Growth Rate (CAGR) of 28.4%*

*Source: https://www.linkedin.com/pulse/20140814090436-13439787-the-business-case-for-predictive-plant-maintenance
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GPredictive Maintenance - Automotive Machine ToolsVEEKEX. i

- Early failure prediction can help reduce unplanned downtime reduction
Costs S50K+ per hour in high-productivity markets like automotive

- Component failures signals can be measured and detected at early stage
Helps to avoid damage of other related/connected components

$250K Replacement cost

$25K replacement cost

4 Days

Amplitude (mg)

’

- Machine learning-based monitoring systems can identify system inefficiencies
A single line in production CN codes with slightly different parameters 2% loss in cycle time
Detection using machine learning techniques identified process anomalies.



0 Predictive Maintenance — Machine Learning for Early PretlicfIbiNX.

- New machine learning-based solutions for efficient manufacturing:

Machine learning-based tools used to increase detection rate and reduce
occurrence value of High Risk Priorit¥]Numbers (RPN) for critical parts
identified by machine tool’s FMEA. This helps to reduce RPN increasing
machine availability

- Support early failure prediction

Cross-multivariable/multicomponent degradation monitoring supported
through real-time machine learning solutions. These solutions can run
]gl_a}gnostlcs tasks that can evolve to prognostic detection to reduce random
ailure

Analytic Value Escalator
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Q Market Opportunity
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Predictive Maintenance Potential

Increase system availability through
8% reduction in unexpected downtimes.

Automotive:

* 91.5 million motor vehicles were
produced globally in 2015.

e ~ 250,000 motor vehicles produced
per day.

* High-productivity machining of
powertrain: >1,000 systems/day

World motor vehicle production Q sropean

2000 2015
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Smart Factory Machine Learning Testbed
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SMART FACTORY MACHINE LEARNING FOR PREDICTIVE MAINTENANCE - TESTREDS

Testhed in Action

CASE STUDY: VALUE OF
PREDICTIVE MAINTENANCE

This case study exemplifies
where Predictive Maintenance
with Machine Learning would

have avoided significant
financial and production line
delay in a high volume
manufacturing system. Shortly
after experiencing initial
prablems, an unknown
degradation in system
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GOALS: -

+ Evoluate & validate Machine Lmﬂng techniques for Predictive Maintenance on high volume production
machinery to deliver optimized system operation.

+ Achieve increased uptime & improved energy efficiency utilizing Machine Learning techniques for advanced
detection of system anomalies and fault conditions prior to failure.

CHALLENGE:

Today’s methodology of Preventative Maintenance, taking machines offline on a regularly scheduled timeline is not
cost efficient and does not necessarily ensure addressing the actual problems leading to system failure. Gaining
accurate, actionable insight from the tfremendous amount of data acquired in real-time, to understand key
component anomalies during operation before system failure, for Predictive Maintenance is a daunting challenge.
Furthermore, the root cause of over 80% of failures is not understood.

& XILINX
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Smart Factory Machine Learning Predictive Maintenance Testbed & XILINX. %

Goals
* Evaluate & validate Machine Learning (ML) techniques for Predictive Maintenance (PM)
on high volume production machinery to deliver optimized system operation

* Achieve increased uptime & improved energy efficiency utilizing ML techniques for advanced
detection of system anomalies and fault conditions prior to failure

Participants
* Sponsors: Plethora lloT: R&D of ML IP, Oberon system & applications with visualization
Xilinx: All Programmable Technology, Connectivity IP, Security, Machine Learning framework and related IP

Phases
1) Lab Development and Test: Utilizes simulated data and degradation/fault conditions for ML exploration - Spain
- Development / Exploratory phase: understand, implement & validate requirements
for CNC Manufacturing system and preparation for pilot factory deployment

2) Pilot Factory: Initial Deployment in limited production facility - Spain - Etx-Tar CNC Manufacturing Facility
- Field test in controlled facility — emphasis on PM and ML deployment on production manufacturing machines

3) Production Facility: Deployment of ML and real-time analytics in Automotive OEM facility — Confirmed -TBA
- Deployment, validation of ML techniques on production CNC systems for optimized operation and energy efficiency

11



0 Smart Factory Machine Learning Testbed £ XILINX.
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Q Solution Overview £ XILINX. (Ui

Deployment Scenarios (OT) & » Convergence (OT-IT) ] > Result (Actionable Insight)
G VR — /-~ ™\ — .
g 1 ISUE * Machine Tool
System
o Component
degradation pattern
analysis
- o Machine behavior
cl:' i Tin¥y A pattern
CIETTS [N} L'w, M
* Time critical sensor fusion | z" v\,h" * Manufacturing cell
100011100 to synchronize data from 2 o M2M interaction
010110111 . .
S 111000010 different domains ) Rl i bopansy o Energy Consumption
* Feature (variables) subset m patter.ns .
selection to: * Production line
o optimize data o Energy optimization
transmission and o Production line
o improve algorithms characterization
performance. .
* Factory Production
*  Machine Learning
algorithms to: plagt I d
o leverage knowledge © Overall data
discovery and aggregation
o failure prediction o Availability
\_ Y, _ optimization




Q Solution Overview
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0 Solution — Service Stack Example
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PLC

—— Machine states

CNC

—— Part counter

—— Cycle time

—— Alarms

——— Pump activation

—— Air consumption

Smart sensor

Axis parameters
and operation
time

Spindle

—— parameters and

Accelerometer

operation time

Energy

consumption

—— Vibration

Edge Tier

Time sensitive communication protocols
Sensor fusion

Real-time analytics

Real-time
services

Degradation
pattern

Failure
prediction

Remaining
useful life

Energy
consumption
pattern

Platform Tier

lloT communication protocols

Cloud-based analytics

Cloud
services

Energy
optimization

Machine
behavior
pattern

Production

characterization

Availability
optimization

Enterprise Tier

lloT orchestration

Business
services

Workorder
management

Spares
management

Asset
management

Customer
management

industrial infemet
CONSORTIUM




Q Edge Tier — Raw data £ XILINX. (4

* Business (ERP, CRM, etc.)
o Company name, address, etc
= 20 variables
* Machine

o PLC, CNC, sensors, actuators
= 110.000 variables

* Sensors working on different domains

o Different sampling times
= Temperature: 0,01 samples/second
= Angular velocity: 10 samples/second
= Power consumption:  4.000 samples/second
= Vibration+: 32.000 samples/second




0 Platform Tier - lloT Programmable SoC & XILINX. %

ICARR - Intelligent Gateway:
o Zyng Programmable SOC (Xilinx)

" |ntegrated ARM Processing System
w/Programmable Logic

o Tasks:
= Sensor fusion:
» Data acquisition from sensors, PLC and CNC.

» Fuse data from multiple sensor domains
» To impute data when different sampling rates

= Feature subset selection:
> Perform multivariate variable selection

= Pre-processing
» Filtering , FFT, etc

= Processing
» Perform on-line machine learning analytics




Q Platform Tier - lloT Programmable SoC £ XILINX. %

UltraSCALE+

|.ocal

i 0‘ , ] GPU for 3D
Analytics ty & Security .

Cloud Services
HW Acceleration of
Application & RT
Processing

Motor Control FOC

N

iiioe  EthereAT~

Image Signal Processing
- 3 CTHEANLT g o
Ethertet/P>> POWERLINK A
Woabu: SErcos Machine Learning
the sutomation bus
TSN IEEE 802.1 CC-LinkIE

O ZYNQ?

Running Running Running
function on on optimized

in SW FPGA FPGA

Average Time 5057.37
(in ms)

4208.65

Speed increase N/A 16.78% 94.91%

Zynq UltraScale+ SoC

Enabling Secure, Safe, Synchronized, Autonomous Operation



Q Platform Tier - Analysis & XILINX. s
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Q Platform Tier - Machine Learning Analysis £ XILINX.

Meaningful
Compression

Structure Image

I Customer Retention
Discover Y Classification

e Goal: Identify structural patterns in the

Visualistaion Reduction Elicitation Detection Classification Diagnostics d a ta

o Classify
Advertising Popularity .
Prediction O P re d I Ct

Learning Learning Weather

: S o Extract new knowledge
Targetted M ac h I n e Population

Marketing Growth

Learning

Recommender Unsupervised Supervised

Systems

Clustering

°°°°°° " e Three types

o Exploratory analysis
o Descriptive modeling

R a—— o Predictive modeling

Learning

Real-time decisions

Robot Navigation Skill Acquisition

Learning Tasks



Shaft Acceleration [g]

Q Platform Tier — Static Machine Learning & XILINX. §

‘. E ot B ot * Exploratory analysis

..g . | o Explore in the data without clear
“M”f . b Gk ; & ik idea

& o For small amounts of data,

& conventional visualization methods
-«90‘%» - & S o For large amounts of data,

| ovsr ) “ dimensional reduction

* Example
o Real Application on machine tool

o Performance analysis of 3
servomotors

o 13 variables per servo




Q Platform Tier — Dynamic Machine Learning & XILINX. §
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* Remaining useful life:
o Machine Learning
= Data stream analysis
o There are not enough bad cases

» Extremely unbalanced data = Novelty Detection

= ML algorithm is measuring abnormal changes of the behavior
pattern.

o Detects early degradation that can affect the expected
useful life.

= Degradation can affect the expected service time.

= |t take data coming from the second stage to monitor
anomalies.

= Added value: early degradation measured using a multivariate
approach.



Q Cloud Tier - Services £ XILINX. (4

* Microsoft-Azure
o MQTT-based communication
o USD 10 per 52 MB/h
o Analytics & Business oriented
o Transmission speed dependent

 GE Digital — Predix/APM
- o Communication based on OPC-UA
Chgpbhad o Industry-oriented

< = ) DC AV #5710+ Backup SEM summer
Horesiations

= oA e o KPI developed for maintenance
A — T

=

* Ability to integrate
o ERP, MES and other business services




Q Cloud Tiers — Business Services & XILINX.
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G Cloud Tiers — Business Services & XILINX. gl

XMPRO
Extensible Integration Connectors

Transformations b @l Context Providers

Enter text io search.

MatrikonOPC

Listener

This listener allows you to
read sensor data from
MatrikenOPC

MaTT
This is a generic MQTT
Listener

MQTT Advanced

This listener allows you to
listen/read data from the
configured MQTT system

OData

This allows for listening to
OData service and
supports where and
expand operations

OPC UA

A listener to read tag
values from an OPC UA
server

0SiSoft PI

A OSiSoft Pl listener to
read data from OSISoft PI
Systems using the AFSDK

Aggregate

This transformation
aggregates a stream by
using a window and
allows aggregate functions
to be performed

Data Conversion

This transformation allows
you to convert data type in
another column

Derived Column

This transformation allows
you to create new column
values.

Edge Analysis

This transformation
enables identification and
analysis of changes in a
stream

Filter
This transformation allows
to filter a stream of data

Join
This transformation joins

Microsoft SharePoint
The stream object
provides context/static
data using XMPro
Connector for Microsoft
SharePoint.

OData

The stream object
provides context/static
data using the XMPro
Connector for OData

Oracle

The stream object
provides context/static
data using XMPro
Connector for Oracle.

0SiSoft PI

The stream object
provides context/static
data using XMPro
Connector for OSISoft Pl

SAP

The stream object
provides context/static
data using the XMPro
Connector for SAP

This action agent sends
an email and allows email
templating

GE Predix

This action agent allows
you to perform REST
operations on GE Predix

1BM Watson

This action agent allows
you to perform operations
using IBM Watson APls

1BM Watson loT

This action agent allows
you to send device data to
IBM Watson loT Platform

Microsoft Chat Bot
An Action Agent to send a
trigger to a Microsoft Bot.

Microsoft Dynamics
AX

Action agent to perform
POST, PUT and DELETE

This Function allows you
to run FFT algorithm



Testbed Usage Scenarios &€ XILINX. %

Predictive Maintenance & Machine Learning

Machine-tool System Manufacturing Cell Production Line Factory Production

Identify Degradation Automation Interaction Behavior Energy Consumption Behavior Overall Data Aggregation
Behavior Pattern Measurement M2M Energy Consumption Patterns Production Line Characterization Availability Optimization
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0 Machine Tool — Spindle Critical Component & XILINX. %

* Machine-tool for powertrain manufacturing
* Cycle time 60 seconds

e Utilization over 95%

* Spindle head — Key critical component
* Power 10 kW

* Primary function: Material removal

e Failure cost :
» Costs USD 30,000 up to 250,000

e Repair time: 5 working shifts

* Impact: 200 direct jobs



0 Machine Tool — Spindle Critical Component & XILINX. %

* Data acquisition and pre-processing
o PLC variables: timestamp, in-cycle, dry-cycle

o CNC variables: power, angular velocity, torque,
temperature

o Sampling rate: 10 Hz
o 10 machining cycles (20 crankshafts)
o More than 90.000 instances




Q Machine Tool — Spindle Critical Component & XILINX. %

SPINDLES

e Descriptive analytics
o 8 variables at the same time
o During as many cycles as possible

o Looking for a behavior pattern
= Given by “not obivous” variable correlations

. aVibration levels on the ball- * Objetive?
bearings? o Define a behavior reference for a healthy spindle
* ¢Temperature level on the o Use the reference to detect deviations

ball-bearing? _
= Early degradation

e ¢Temperature level on the
windings? * How?

« ¢Tool engagement time? o Using clustering techniques

 ¢General behavior of the
spindle?



G Machine Tool — Spindle Critical Component & XILINX. gi

o LE o * Understand Cluster Evolution:
o Cluster shapes
o (how the identified machining characteristics change over
. % time)
o Number of clusters (identify new machining
characteristics).

* Gaussian mixtures

I Ity o Provides new information about different states of the
o R IS SR e spindle
£ e Real-time operation:
o Focus on upgrading CPS embedded electronics
o Enable the algorithm acceleration using the Zynqg
Programmable SOC / FPGA

POWER_SERVO_SP12_kW
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Community. Collaboration. Convergence.

Things are coming together.

www.iiconsortium.org



