

June 1st 2018 in Tokyo
The second time "IIC & IVI joint workshop"
IIC & IVI sharing use case information

Condition Monitoring and Predictive Maintenance Testbed

Kazunari Okada(岡田一成)

Sr. Technical Marketing Manager
ISO 18436-2 Vibration Analyst (CAT II)
National Instruments Corporation Japan

Why condition monitoring is necessary?

売上増

Increase Revenue

- Increase uptime and service offerings
- Optimize asset maintenance activity

コスト削減

Reduce Costs

- Reduce warranty repair costs
- Increase MTBF
- Reduce frequency of unscheduled downtime
- Optimize the workforce

リスク削減と安全性向上

Reduce Risk and Increase Safety

- Reduce worker contact with dangerous machines/environments
- Prevent catastrophic failure and unscheduled outages

予知保全システム構築時の課題 Issues in building predictive maintenance system

- Edge Computing of Large amount of Sensor Data
- Time Sync. between Various Sensor Measurements
- Data Visualization & Analysis

② センサ計測後の課題

- ③ 業界を超えた協力体制の必要性 (Collaboration Across Industry)
 - IT System
 - •IT & OT Integration (SI firms are necessary)
 - Data Analytics Partners

How do we address our challenges?

OPEN PLATFORM

- ✓ 計測精度が保てるのか?
- ✓ 各種プロトコルへの対応は?
- ✓ データフォーマットをどうすべきか?
- ✓ 将来の拡張性は?
- ✓ セキュリティーは? etc.

- ✓ Measurement Quality?
- ✓ Flexible communication protocols?
- ✓ Common data file formats?
- ✓ Future-proof architecture?
- ✓ Security? etc.

Condition Monitoring and Predictive Maintenance Testbed

Solution Architecture

Prototype Deployed to a Relevant Environment

NI InsightCM installed at NI Headquarters (Austin, TX)

Panel

Cable reduction box

Sensors

Assets (chilled water pump & motor)

Live prototype available online at:

www.ni.com/try-insightcm

Demo www.ni.com/try-insightcm

Use Cases

Project Smart Generation

Customer Profile

- Large power generation in US
- 50+ GW Fossil Generation Capacity

+08

Sites

10,000
Assets to Monitor

30,000

Sensors

60,000

Manual Rounds/Month for Data Collection

Business Need

- Increase Revenue: Increase uptime and service offerings, and optimize asset maintenance activity.
- Reduce Costs: Reduce warranty repair costs, frequency of unscheduled downtime, and optimize the workforce.
- Increase Safety: Reduce worker exposure to dangerous machines/environments.
- Reduce Risk: Prevent catastrophic failure and unscheduled outages.

Challenge: Better leverage new technologies to address increasing reliability demands and workforce optimization.

加速度センサー

温度センサー

オイル分析センサー

サーモグラフィ

近接プローブ

その他

30,000+

センサー

10,000+ 設備

モニタリングシステム

2,000+ ノード

プラントサーバー

NI InsightCM™ Enterprise

> Database Historian

~30 プラント

モニタリング&診断センター

PlantView™ Fleet-Wide Dashboard

InStep PRiSM™ Pattern Recognition

GP EtaPRO™ **Efficiency Monitoring** & Thermal Modeling

OSIsoft™ PI Database Historian

EPRI Fault Signature Database

M&D センター

Before

80%

20%

Data Collection

Data Analysis

- Periodic manual collection
- Workforce low value tasks

After

20%

80%

Data Collection

Data Analysis

- Online continuous monitoring
- Workforce high value tasks

*Source: HIS Markit Technology, Case Study: Duke Energy Leverages IIoT for Predictive Maintenance Applications http://landing.ni.com/DukeEnergyIIoT

Project Smart Pump

Customer Profile

- Leading provider of fluid motion and control products and services
- 5 Billion annual revenue, 18K+ Employees

200+

Years in Business

245

Locations Worldwide

10,000+

Customers

195

Quick Response Centers

Business Need

- Increase Revenue: Increase uptime and service offerings, and optimize asset maintenance activity.
- Reduce Costs: Reduce warranty repair costs, frequency of unscheduled downtime, and optimize the workforce.
- Increase Safety: Reduce worker exposure to dangerous machines/environments.
- Reduce Risk: Prevent catastrophic failure and unscheduled outages.

Challenge: Leverage IIoT technologies to make older assets smart.

1. Aging assets with limited data

2. Scarcity of specialists

3. Connectivity with existing systems

Making Existing Assets Smart

- https://youtu.be/xjbtHJqegMA (Japanese)
- https://youtu.be/xiAXXI36w8g (English)

Demo Video

https://youtu.be/xiAXXI36w8g

IIC Testbedで鍛えた オープンプラットフォームを市場投入しています

ご静聴頂きありがとうございました

Kazunari Okada (岡田一成)

Sr. Technical Marketing Manager ISO 18436-2 Vibration Analyst (CAT II) National Instruments Corporation Japan

kazunari.okada@ni.com

弊社導入事例などの勉強会の御要望を承っております

ni.com/iot

